
NeuroImage
 

A novel method for functional brain networks based on static cerebral blood flow
--Manuscript Draft--

 
Manuscript Number:

Article Type: Full Length Article

Section/Category: Analysis Methods

Corresponding Author: Jinhui Wang, Ph.D.
South China Normal University
Guangzhou, Guangdong CHINA

First Author: Changwen Wu

Order of Authors: Changwen Wu

Yu He

Junle Li

Xiaofan Qiu

Qihong Zou

Jinhui Wang, Ph.D.

Abstract: Cerebral blood flow (CBF) offers a quantitative and reliable measurement for brain
activity and is increasingly used to constructing functional networks. However, current
methods evaluate inter-regional relations mainly based on CBF temporal dynamics,
which suffers from low signal-to-noise ratio and poor temporal resolution. Here we
proposed a method to construct CBF networks by estimating interregional Jensen-
Shannon divergence-based similarity in regional distributions of static CBF measured
by arterial spin labeling perfusion imaging over a scanning period. Based on CBF data
of 30 healthy participants from 10 visits, we found that the CBF networks exhibited
several non-trivial topological features (e.g., small-world organization, modular
architecture, and hubs) and showed low-to-fair test-retest reliability and high between-
subject consistency. We further found that interregional CBF similarities were
depended on anatomical distance and differed between high- and lower-order
subnetworks and nodal total CBF similarities were related to regional sizes and CBF
levels. Finally, nodal CBF similarities were found to spatially align with the DAT and
mGluR5 intensities, gene expression enriched in several cholesterol-related pathways,
and cognitive processes related to language and executive functions. Altogether, CBF
networks derived from our proposed method provide a reliable and neurobiologically
meaningful means to study functional network organization of the human brain.

Suggested Reviewers: Feng Liu
Tianjin Medical University General Hospital
fengliu@tijmu.edu.cn
Expert in brain network methodology

Xin Di
New Jersey Institute of Technology
synge.x.d@gmail.com
Expert in brain network methodology

Satoru Hayasaka
hayasaka@utexas.edu
Expert in brain network methodology

Andrew Zalesky
University of Melbourne
azalesky@unimelb.edu.au
Expert in brain network methodology

Opposed Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Highlight 

Constructed CBF networks using divergence-based similarity in static CBF. 

CBF networks showed non-trivial topology and high consistency across subjects. 

CBF networks were influenced by anatomical distance, regional sizes, and CBF 

levels. 

CBF networks correlated with genetic, chemoarchitectonic, and cognitive variables. 

 

4. Highlights (for review)



 

 

Abstract 

Cerebral blood flow (CBF) offers a quantitative and reliable measurement for brain 

activity and is increasingly used to constructing functional networks. However, 

current methods evaluate inter-regional relations mainly based on CBF temporal 

dynamics, which suffers from low signal-to-noise ratio and poor temporal resolution. 

Here we proposed a method to construct CBF networks by estimating interregional 

Jensen-Shannon divergence-based similarity in regional distributions of static CBF 

measured by arterial spin labeling perfusion imaging over a scanning period. Based 

on CBF data of 30 healthy participants from 10 visits, we found that the CBF 

networks exhibited several non-trivial topological features (e.g., small-world 

organization, modular architecture, and hubs) and showed low-to-fair test-retest 

reliability and high between-subject consistency. We further found that interregional 

CBF similarities were depended on anatomical distance and differed between high- 

and lower-order subnetworks and nodal total CBF similarities were related to regional 

sizes and CBF levels. Finally, nodal CBF similarities were found to spatially align 

with the DAT and mGluR5 intensities, gene expression enriched in several 

cholesterol-related pathways, and cognitive processes related to language and 

executive functions. Altogether, CBF networks derived from our proposed method 

provide a reliable and neurobiologically meaningful means to study functional 

network organization of the human brain. 
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Introduction 

Functional connectivity has become an effective method for characterizing intrinsic 

functional dynamics (Van Dijk et al., 2010) and been applied to assess variations in 

neuropsychiatric disorders (Li et al., 2022; Liu et al., 2017; Wang et al., 2013), 

cognitive ability (Li et al., 2017; Sripada et al., 2021), and development (Gao et al., 

2017). Currently, functional connectivity is estimated mainly based on 

blood oxygen level-dependent (BOLD) signals measured by functional magnetic 

resonance imaging (fMRI). However, BOLD signals are an indirect index for 

neuronal activity, which measure hemodynamic changes influenced by cerebral blood 

flow (CBF), blood volume, and blood oxygenation (Hillman, 2014). By contrast, CBF 

as measured by arterial spin labeling (ASL) perfusion imaging is a direct and 

quantitative biological index for brain function (Wang et al., 2008; Wong, 2014). 

Moreover, CBF couples with cerebral metabolic rates for glucose and oxygen 

consumption (Vaishnavi et al., 2010a). Therefore, CBF may serve as an ideal data 

source to assess functional connectivity. 

  To date, several methods have been proposed to estimate functional connectivity 

based on CBF. For example, an early study applied independent component analysis 

to CBF time series and identified 5 distinct resting-state networks with spatial and 

temporal characteristics closely matched those derived from BOLD-based functional 

networks (De Luca et al., 2006). Subsequently, Liang et al. constructed functional 

networks by calculating Pearson correlation of regional CBF time series and found 

that the hub regions largely overlapped with those in BOLD-based functional 
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networks (Liang et al., 2014). The Pearson correlation-based method can also be 

extended to multiple regression (Li et al., 2020) and cross-correlation (Zou et al., 

2009). Despite the success, it should be noted that such CBF time series-based 

functional connectivity methods are limited by the low signal-to-noise ratio and poor 

temporal resolution of CBF time series (Alsop et al., 2015; Wong, 2014; Zou et al., 

2009). This largely limits the application scenarios of these CBF time series-based 

functional connectivity methods. Accordingly, it is necessary to develop more 

appropriate methods for studying functional connectivity or networks using CBF. 

Here, we proposed a novel method to construct CBF networks based on the static 

mean perfusion map over a scanning period. Previous studies have shown that the 

static mean perfusion map has high signal-to-noise ratio and exhibits high test-retest 

(TRT) reliability (Zou et al., 2015). Specifically, we employed a kernel density 

estimation method to fit regional CBF distributions, between which the similarity was 

quantified by Jensen-Shannon divergence-based approach. For the resulting CBF 

networks, we systematically characterized their topological architecture, evaluated 

their TRT reliability, between-subject consistency, and potential influencing factors, 

and explored their chemoarchitectonic, genetic, and cognitive correlates. Our results 

indicate that the proposed method for CBF networks offers a relatively reliable, 

neurobiologically meaningful, and cognitively relevant means for future functional 

connectome studies. 

 

Materials and Methods 
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Participants and data acquisition 

A publicly available TRT dataset was used in this study (Chen et al., 2015). This 

dataset contained 30 subjects (15 females; mean age 24, SD = 2.41), who were 

confirmed to have no history of neurological or psychiatric disorders, substance 

abuse, or head injuries resulting in consciousness loss. Each subject was scanned ten 

times over one month with one scan every three days. Specifically, ASL perfusion 

MRI data were acquired using a 3.0-Tesla Discovery MR750 scanner (General 

Electric, Milwaukee, WI, USA), employing a 3D pseudo-continuous arterial spin 

labeling sequence with the following parameters: TR = 4.834 s; TE = 11.088 ms; FA = 

111°; slice thickness = 3 mm; no gap; slice number = 100; matrix = 128 × 128; FOV 

= 100% of phase FOV. A T1-weighted Fast Spoiled Gradient echo (TR = 8.1 ms, TE = 

3.1 ms, TI = 450 ms, flip angle = 8°, field of view = 256 × 256 mm2, matrix = 256 × 

256, voxel size = 1.0 × 1.0 × 1.0 mm3, and 176 sagittal slices) was carried out to 

acquire a high-resolution anatomical image of the brain structure. A written informed 

consent was obtained from each subject before data collection. For more details, see 

(Chen et al., 2015). 

 

Preprocessing of ASL images 

For the ASL perfusion MRI, individual CBF-weighted images were obtained using 

Function Tool (AW 4.5 Workstation; GE Healthcare). The CBF-weighted images 

were then corrected for partial volume effects using the ASLtbx toolbox (Hu et al., 

2010; Wang et al., 2008), co-registered to corresponding structural images, 
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normalized to the MNI space, resampled to 3-mm isotropic voxels, and spatially 

smoothed using a 6-mm full-width half-maximum Gaussian kernel. Finally, the CBF-

weighted images were mean-scaled by dividing each voxel’s value by the whole-brain 

mean value for each subject. 

 

Construction of CBF networks 

Definition of network nodes. The network nodes were defined by Schaefer’s 

atlas, which parcels the cerebral cortex into 200 regions of interest (ROIs) (Schaefer 

et al., 2018). Specifically, these ROIs were categorized into seven subnetworks 

(Thomas Yeo et al., 2011): visual network (VN), somatomotor network (SMN), dorsal 

attention network (DAN), ventral attention network (VAN), limbic network (LN), 

fronto-parietal control network (FPN), and default mode network (DMN). 

Definition of network edges. The network edges were defined as Jensen-Shannon 

divergence-based similarity (JSDs) to quantify the similarity of CBF distributions of 

two brain regions. We first extracted CBF signals within each region and estimated 

the probability density function (using MATLAB function ksdensity). The probability 

density functions were then transformed into probability distributions (PDs). Finally, 

the JSDs was defined by: 

𝐽𝑆𝐷𝑠(𝑃, 𝑄) = 1 − √𝐽𝑆𝐷(𝑃||𝑄). 

𝐽𝑆𝐷(𝑃||𝑄) =
1
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where P and Q denote regional PDs, and n denotes the sample points number (28 in 
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this study) (Wang et al., 2016). The value range for JSDs is [0, 1], a higher value 

indicates higher similarity. 

 

Graph-based topological characterization of CBF networks 

We utilized graph-based network measures to characterize CBF networks. All network 

analyses were performed with the GRETNA toolbox (Wang et al., 2015). 

Threshold selection. A sparsity-based thresholding procedure was used to binarize 

networks, ensuring the same edge number across subjects and scans. The sparsity was 

defined as the ratio of the actual edge number to the maximum possible edge number 

in the network (20 logarithmically spaced values from 0.05 to 0.95 in this study). 

Global properties. We calculated five global properties (clustering coefficient, 

Cp, shortest path length, Lp, local efficiency, Eloc, global efficiency, Eglob, and 

modularity, Q) at each sparsity for each network. Considering the dependence of 

network properties on sparsity, we further calculated the area under the curve (AUC) 

to provide summary scalars. To test whether the CBF networks are non-randomly 

organized, all global properties were further normalized by dividing them by the 

corresponding average of the 100 matched random networks. These random networks 

were generated using a topological rewiring algorithm to preserve the same degree 

distribution as the original networks (Maslov and Sneppen, 2002). Typically, a small-

world, highly efficient, and modular network should fulfill the following conditions: 

normalized Cp > 1 and normalized Lp ~ 1, normalized Eloc > 1 and normalized Eglob 

~1, and normalized Q > 1. 
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Nodal properties. We calculated the nodal degrees at each sparsity and used 

AUC as the summary scalar for each network. In addition, we averaged the nodal 

degrees across all networks, to fit the degree distribution using different models 

(power law, exponential, and exponentially truncated power law) and identified hubs 

as regions whose nodal degree ranked in the top 10%. 

 

Evaluation of CBF networks 

TRT reliability. We quantified the TRT reliability of the CBF networks using 

intraclass correlation coefficient (ICC) (Shrout and Fleiss, 1979). Specifically, we 

focused on the global properties, nodal degrees, and edges of the CBF networks. For a 

given measure repeatedly observed k times, the ICC was calculated as: 

𝐼𝐶𝐶 =
𝑀𝑆𝑅−𝑀𝑆𝑊

𝑀𝑆𝑅+(𝑘−1)𝑀𝑆𝑊
 , 

where MSR represents the mean square of between-subject variance; MSW represents 

the mean square of within-subject variance; and k represents the number of repeated 

observations per subject (here, k =10). Similar to our previous studies (Wang et al., 

2011, 2016; Y. Li et al., 2021; Yin et al., 2023), the TRT reliability was categorized as 

poor (ICC < 0.25), low (0.25 < ICC < 0.4), fair (0.4 < ICC < 0.6), good (0.6 < ICC < 

0.75), and excellent (0.75 < ICC < 1). 

Between-subject consistency. The networks and the nodal degrees were averaged 

across ten scans and then assessed by Pearson correlation for each pair of subjects, 

measuring their between-subject consistency. 

Inter-subnetwork differences. To study whether the CBF networks were related to 
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functional topography of the cortex, we categorized the seven subnetworks predefined 

in the Schaefer’s atlas into low-order (VN and SMN) and high-order (DAN, VAN, 

FPN, and DMN) subnetworks (Stanford et al., 2022). After averaging the CBF 

networks across subjects, we evaluate the differences between low- and high-order 

subnetworks in nodal degree, within-subnetwork interregional CBF similarity using a 

nonparametric permutation test based on two-sample t-tests (10,000 times). 

Potential influencing factors. After averaging the CBF networks and their nodal 

degrees across all subjects and scans, we used Spearman correlation to assess the 

relationships (1) between the regional sizes and the nodal degrees; (2) between the 

average regional CBF levels and the nodal degrees; and (3) between the interregional 

anatomical distances (Euclidean distance) and CBF similarities; The significance 

levels of these correlations were estimated with nonparametric spin-based 

permutation tests (10,000 repetitions) (Alexander-Bloch et al., 2018; Váša et al., 

2018). The spin-based permutation test is a widely used approach to measure the 

significance of the correlation between two cortical maps (the source and target maps) 

while correcting for spatial autocorrelation. Specifically, random rotation is first 

applied to the spherical projection of parcellation. Then, the source map is permuted 

according to the order of the rotated brain regions. Next, the correlation coefficient is 

calculated between the target map and the permuted source map, generating a null 

distribution after 10,000 repetitions. Finally, the P-value is obtained as the proportion 

of permutations where the resultant absolute values of coefficients equaled or 

exceeded the actual absolute value of the coefficient between the target map and the 
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source map. 

 

Chemoarchitectonic correlates of CBF networks 

To investigate the chemoarchitectonic correlates of the CBF networks, we obtained 

data from 

https://github.com/netneurolab/hansen_receptors/tree/main/data/PET_parcellated 

(Hansen et al., 2022), which provided 38 neurotransmitter intensity maps of healthy 

subjects from multiple studies, including: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT4, 5-HT6, 5-

HTT, α4β2, CB1, D1, D2, DAT, GABAA, H3, M1, mGluR5, MOR, NET, NMDA, and 

VAChT. The D2 intensity map using raclopride tracers was excluded from further 

analysis due to the unreliable binding of raclopride tracers in the cortex. Details on 

these neurotransmitter intensity maps can be found at 

https://github.com/netneurolab/neuromaps/wiki/Annotation-information (Markello et 

al., 2022). We then analyzed the relationship between the nodal degrees of the CBF 

networks and the regional mean intensities of each neurotransmitter using Spearman 

correlation, after averaging the nodal degrees across all subjects and scans. All 

correlations were validated using nonparametric spin-based permutation tests (10,000 

times). A false discovery rate (FDR) procedure was employed to correct for multiple 

comparisons across all correlations at the level of q < 0.05. 

 

Genetic correlates of CBF networks 

To investigate the genetic correlates of the CBF networks, we examined the 

https://github.com/netneurolab/hansen_receptors/tree/main/data/PET_parcellated
https://github.com/netneurolab/neuromaps/wiki/Annotation-information
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correlation between the nodal degrees of the CBF networks and transcriptional 

profiles from the AHBA dataset. For genes that strongly contributed to the correlation, 

we further performed gene ontology (GO) enrichment analysis to identify their 

relevant biological process. 

AHBA dataset. The AHBA dataset is a publicly available online resource, which 

contains brain-wide transcriptomic information and multimodal MRI obtained from 

six healthy adult human donors (age, 24 - 57 years; 5 males and 1 female) with no 

known neuropathological or neuropsychiatric disease history (Hawrylycz et al., 2012). 

Specifically, the transcriptional activity was recorded for 20,737 genes from 3,702 

spatially distinct tissue samples that covered almost the entire brain. The tissue 

samples were collected from the left hemisphere for 4 donors and both hemispheres 

for 2 donors. For more details, see http://human.brain-map.org/. 

Gene data preprocessing. Standardized workflows (Arnatkevic̆iūtė et al., 2019) 

were used to preprocess the gene data in the AHBA dataset with the abagen toolbox 

(version 0.1.3; https://github.com/rmarkello/abagen) (Markello et al., 2021). First, we 

applied intensity-based filtering to exclude probes that did not exceed background 

noise in more than 50% of the samples. Then, a representative probe was selected for 

each gene with the most consistent pattern of regional variations across the six donor 

brains as quantified by Differential Stability (Hawrylycz et al., 2016; Kirsch and 

Chechik, 2016). To assign gene expression samples to the regions, we excluded 

samples further than 2 mm away from any voxel in the parcellation and assigned each 

of the remaining samples to its nearest region according to the minimum distance 

http://human.brain-map.org/
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between the sample and any voxel in a region. Finally, gene expression levels of the 

remaining samples were normalized for each donor by applying a scaled robust 

sigmoid normalization for every sample across genes and for every gene across 

samples to assess the relative expression of each gene across regions while controlling 

for donor-specific differences in gene expression. To obtain regional gene expression 

profiles, the normalized expressions for samples assigned to the same region were 

averaged for each donor and aggregated into a region × gene matrix comprising 

expression levels of 15,633 genes over 200 regions. 

Relationship between CBF networks and transcriptional profiles. To investigate 

the relationship between CBF networks and transcriptional profiles, we performed the 

partial least squares (PLS) regression to predict the group-level mean nodal degrees of 

the CBF networks with regional expression levels of all genes. The PLS1 was the 

linear combination of regional expression levels of all genes that exhibited the 

strongest correlation with the nodal degrees. The significance level of the correlation 

was estimated by re-running the PLS regression for nodal degrees simulated via a 

nonparametric spin-based permutation test (10,000 times) to correct for spatial 

autocorrelation. If a significant correlation was observed, the weights of all genes to 

form the PLS1 were Z-transformed, and genes with an absolute Z-score > 1.64 were 

considered to contribute to the correlation strongly. Furthermore, to investigate 

whether the nodal degrees of the CBF networks are related to the cellular architecture-

specific gene expressions, we performed Spearman correlations between the nodal 

degrees and mean gene expressions of canonical cell classes, including excitatory 



11 

 

neurons, inhibitory neurons, oligodendrocyte progenitor cells, astrocytes, endothelial 

cells, microglia, and oligodendrocytes (Arnatkeviciute et al., 2021). All correlations 

were subsequently validated using nonparametric spin-based permutation tests 

(10,000 times). Finally, the FDR procedure was applied to correct for multiple 

comparisons across seven cell classes at the level of q < 0.05. 

GO enrichment analysis. For the identified genes that strongly contributed to the 

PLS1, we performed GO enrichment analysis to search for their related GO terms, this 

analysis were performed separately for the genes showing the strongest positive and 

negative contributions to the component (i.e., PLS1+ and PLS1- genes). First, we 

downloaded the biological process-related GO term hierarchy and annotation files for 

Homo sapiens (version April 17, 2019) from 

https://figshare.com/s/71fe1d9b2386ec05f421 (Fulcher et al., 2021). Then, we ran the 

gene-to-category annotations, processed the hierarchy correlations between GO terms, 

and restricted our analysis to the GO terms with 10 - 1,000 gene annotations (Vértes 

et al., 2016; Whitaker et al., 2016). A spatial ensemble null model was used to reduce 

the false-positive rate in GO enrichment analysis (Fulcher et al., 2021). Specifically, 

an enrichment coefficient was calculated for each resulting GO term. To estimate the 

significance levels of the enrichment coefficients, we re-ran the PLS regression for the 

nodal degrees simulated via nonparametric spin-based permutation (Alexander-Bloch 

et al., 2018; Váša et al., 2018) and re-calculated the enrichment coefficient for each 

GO term. Significant GO terms were determined after correcting for multiple 

comparisons with the Bonferroni procedure at the level of p < 0.05, followed by 
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removing redundant GO terms with the online tool REViGO (http://revigo.irb.hr, 

version 1.8.1, May 10, 2023) (Supek et al., 2011). Notably, the GO enrichment 

analysis was performed for genes that contribute to the correlations positively and 

negatively, respectively. 

 

Cognitive correlates of CBF networks 

To examine the cognitive correlates of CBF networks, we correlated the averaged 

degree of CBF networks across all subjects and scans with multiple cognitive 

association test maps using PLS regression. The cognitive association test maps were 

derived from the NeuroSynth database (Yarkoni et al., 2011) 

(https://github.com/neurosynth/neurosynth), and quantitatively represented how 

regional fluctuations in activity were related to specific cognitive processes. 

Specifically, a total of 123 cognitive association test maps that primarily focused on 

cognitive function were selected based on the Cognitive Atlas (Poldrack et al., 2011). 

The full list of these maps can be found in (Hansen et al., 2022). The selected maps 

were further parcellated using the Schaefer atlas and Z-transformed to generate the 

cognitive association test scores at the regional level for the PLS regression. To 

estimate the significance level of the PLS regression, a nonparametric spin-based 

permutation test was used (10,000 times) (Alexander-Bloch et al., 2018; Váša et al., 

2018). If a significant correlation was observed, we computed the Pearson correlation 

coefficient between each association test map and the PLS1, the linear combination of 

cognitive association test maps that exhibited the strongest correlation with the nodal 

https://github.com/neurosynth/neurosynth
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degrees. All correlations were validated using nonparametric spin-based permutation 

tests (10,000 times). The association test maps with significantly positive/negative 

correlation coefficients were considered to positively/negatively contribute to the 

PLS1, after the Bonferroni correction procedure across all correlations at the level of 

p < 0.05. 

 

Results 

Connectivity and topological organization of CBF networks 

Connectivity patterns. Figure 1a shows the group-level mean CBF network. The 

group-level mean CBF network exhibited high interregional CBF similarities with 

low variance (0.708 ± 0.096). 

Global properties. Each subject's CBF network exhibited typical small-

worldness, high efficiency, and modular architecture over the whole thresholding 

range, as evidenced by normalized Cp > 1 and normalized Lp ~ 1, normalized Eloc > 1 

and normalized Eglob ~1, and normalized Q > 1 (Figure 1b). 

Nodal properties. The exponentially truncated power law model gave the best 

fitting to the degree distribution of the CBF networks (R2 = 0.985) (Figure 1c). A total 

of 20 hubs were identified that were predominantly located in the DAN (5), DMN (5), 

SMN (4), and VAN (4) (Figure 1d). 

 

Assessment of reliability and influences on structure of CBF networks 

Reliability and consistency. Global network attributes of the CBF networks 

exhibited low TRT reliability (Cp: ICC = 0.347; Lp: ICC = 0.200; Eloc: ICC = 0.345; 
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Eglob: ICC = 0.277; Q: ICC = 0.259). For nodal degree, although most regions 

exhibited low TRT reliability (ICC = 0.206 ± 0.102), a specific set of regions (9, 

4.5%) showed fair TRT reliability (Figure 2a), which were predominantly located in 

the VAN (4, 44.4%) and DMN (3, 33.3%) such as the right temporal-occipital-

parietal junction region and left prefrontal cortex. Similarly, despite an overall low 

TRT reliability for interregional CBF similarity, a specific subset of edges (888, 

4.46%) showed fair TRT reliability (Figure 2b). Both nodal degrees (r = 0.746 ± 

0.103) (Figure 2c) and interregional CBF similarities (r = 0.654 ± 0.112) (Figure 2d) 

showed high consistency among subjects. 

Inter-subnetwork differences. The high-order subnetworks exhibited significantly 

higher intra-network CBF similarities compared to the low-order subnetworks (t = 

7.740, p < 0.001) (Figure 3). No significant differences were observed for nodal 

degrees between the high- and low-order subnetworks (t = 0.860, p = 0.383). 

Potential influencing factors. We found that the interregional CBF similarities 

were significantly correlated with anatomical distance (rho = -0.239, p < 0.001) 

(Figure 4a), Moreover, the nodal degree of the CBF networks was significantly 

correlated with regional size (rho = -0.339, p < 0.001, Figure 4b), and regional mean 

CBF level (rho = 0.601, p < 0.001, Figure 4c). 

 

Association between neurotransmitter intensities and nodal degrees of CBF 

networks 

Significantly correlations were observed between the nodal degrees of CBF networks 
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and the intensity of DAT with [11C]P943 tracer (rho = 0.266, p < 0.001) (Figure 5a) 

and mGluR5 with [11C]ABP688 tracer (rho = -0.367, p = 0.002) (Figure 5b). 

 

Mapping nodal degrees of CBF networks to gene expression 

A significantly positive correlation was observed between the nodal degrees of the 

CBF networks and regional gene expression profiles, the PLS1 explained 28% of the 

variance of the nodal degrees (r = 0.530, p = 0.043) (Figure 6a). A total of 810 genes 

were considered as strong contributors to this correlation (PLS1+: 427 genes; PLS1-: 

383 genes, Figure 6b). After redundant GO terms were removed with REVIGO, GO 

enrichment analysis revealed that the PLS1+ genes were enriched in 17 biological 

processes which encompassed a diverse range of cellular activities, primarily involved 

in the cholesterol-related process (e.g., “intracellular cholesterol transport”, 

“cholesterol homeostasis), and PLS1- genes were not enriched in any neurobiological 

processes. Detailed information about these biological processes was provided in 

Table S1. After multiple comparison correction, the nodal degrees of the CBF 

networks showed a positive correlation with the mean expression of the genes 

enriched in endothelial cells (rho = 0.332, p < 0.001) (Figure 6c). 

 

Mapping nodal degrees of CBF networks to cognitive function 

We observed a significant correlation between the nodal degrees of the CBF networks 

and cognitive association test maps, with 32.8% of the variance of the nodal degrees 

explained by PLS1 (r = 0.573, p = 0.003). A total of 52 cognitive processes were 
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considered as strong contributors to this correlation (positive contributors: 24 

cognitive processes; negative contributors: 28 cognitive processes). The cognitive 

processes with the six highest positive correlation coefficients were mainly enriched 

in executive functions (e.g., ‘goal’, ‘monitoring’, ‘interference’, ‘response selection’, 

and ‘planning’), and ‘working memory’ and the cognitive processes with the six 

highest negative correlation coefficients were primarily enriched in the language 

domain, such as ‘communication’, ‘meaning’, ‘listening’, ‘language comprehension’, 

‘speech perception’, and ‘language’ (Figure 7). 

 

Discussion 

In this study, we introduced a JSDs method to construct CBF networks that eliminated 

the need to acquire CBF time series. We systematically investigated the CBF 

networks by analyzing their topological structure, reliability, and associations with 

chemoarchitecture, gene expression, and cognition. We first found that the CBF 

networks exhibited non-trivial organization. Further analysis revealed low-to-fair TRT 

reliability and high consistency among subjects of the CBF networks. We also 

demonstrated that the CBF networks were modulated by regional size and CBF level, 

anatomical distance, and functional cortical topography. Finally, we observed 

significant correlations of the CBF networks with DAT and mGluR5, gene expression 

enriched in cholesterol-related pathways, and language and executive processes. 

Altogether, this study offers a relatively reliable and biologically meaningful 

framework for constructing CBF networks, providing a new way for future research 
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on functional connectome of the human brain. 

 

The nontrivial organization of CBF networks 

Our findings revealed that the CBF networks exhibited small-world topology that was 

thought to support the efficient segregation and integration of information in the 

human brain while minimizing wiring and energy costs (Bassett and Bullmore, 2006; 

Liao et al., 2017). This principle is also observed in other brain networks, such as 

BOLD-based functional networks (Wang et al., 2009a), structural networks (Hagmann 

et al., 2007), and morphological networks (Y. Li et al., 2021; Wang et al., 2016), 

reinforcing the idea that the small-world topology is a common feature across 

different brain networks. We also found that the CBF network exhibited modular 

organization. Modular organization in the brain refers to the idea that neural networks 

are divided into several distinct, interacting subnetworks or modules. This 

organization allows the brain to efficiently process information by localizing certain 

functions to specific modules while maintaining inter-module communications, thus 

improving the robustness, adaptivity, and evolvability of network and, supporting the 

emergence of adaptive behavior and cognition (Bullmore and Sporns, 2009; Meunier 

et al., 2010). Considering the functionally defined and Yeo-7 subnetworks-based atlas, 

i.e., Schaefer’s atlas, used for CBF network construction, an interesting question is 

raised that how the functional modules interacts in CBF networks, which will deepen 

our understanding on how the CBF networks support human brain functions. 

Moreover, we identified several interconnected hubs of the CBF networks and found a 



18 

 

significant positive correlation between nodal degrees and the regional CBF levels, 

suggesting that hubs of the CBF networks received higher CBF. Regions with high 

CBF levels are typically associated with enhanced neuronal activity, dense capillary 

networks, and increased energy demands for oxygen and glucose (Karbowski, 2011; 

Watts et al., 2018). These features make them more likely to participate in neural 

processing, which may explain their role as hub nodes in the CBF networks. 

 

Moderate reliability of CBF networks 

In this study, we evaluated the TRT reliability and between-subject consistency of 

CBF networks. We observed that the ICC values of interregional CBF similarity and 

nodal degree ranged from low to fair. Previous studies have shown that the human 

CBF is affected by physical and emotional states of participants (Honda et al., 2018; 

Hoshi and Chen, 2002; Ozawa et al., 2019) and the morning-evening variation 

(Shannon et al., 2013). These factors are thus speculated to lead to, to some extent, the 

observed low-to-fair TRT reliability of CBF networks. In addition to these factors, 

different image preprocessing strategies are previously reported to influence the TRT 

reliability of CBF signals, such as motion correction and spatial filtering (Fazlollahi et 

al., 2015). Therefore, future studies are needed to examine how different image 

preprocessing strategies affect the TRT reliability of CBF networks, which will 

provide guidance on determining analytical strategies for obtaining reliable CBF 

networks. Meanwhile, the factors of brain parcellation, thresholding method, and 

network type, which are demonstrated to affect the TRT reliability of brain networks 
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(Garrison et al., 2015; Y. Li et al., 2021; Wang et al., 2009b, 2011; Yin et al., 2023), 

should also be taken into account in future. Despite the low-to-fair TRT reliability, we 

observed high consistency across subjects for the CBF networks in terms of both 

nodal degree and interregional CBF similarity. The high consistency suggests the 

presence of a stable, intrinsic CBF network patterning shared across subjects. Thus, 

we averaged individual CBF networks to derive a consensus estimate of the CBF 

network structure, which was used to explore their neurobiological signatures. 

 

Neurobiological signatures of CBF networks 

We examined neurobiological signatures of CBF networks by linking them with 

chemoarchitecture and transcriptional profiles. We observed a positive correlation 

between the degree of CBF networks and dopaminergic neurotransmitter intensity 

(DAT), while finding a negative correlation with glutamatergic activity (mGluR5). A 

previous study demonstrated that CBF changes induced by different psychiatric 

medications are associated with neurotransmitter systems, including DAT (Dukart et 

al., 2018). Regarding mGluR5, its activation triggers Ca2+ transients in astrocytes 

(Wang et al., 2006), which initiates a series of events that ultimately modulate CBF 

through the regulation of arteriole smooth muscle tone (Zonta et al., 2003). Thus, the 

observed associations of CBF networks with DAT and mGluR5 might be driven by 

the modulatory effects of these neurotransmitters on CBF dynamics. 

In addition to the chemoarchitectonic analysis, we showed that the CBF networks 

significantly correlate with transcriptional profile and identified genes with strong 
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contributions to this correlation. Subsequent analyses revealed that these genes were 

primarily enriched in cholesterol-related processes, including intracellular cholesterol 

transport and cholesterol homeostasis which refer to the cholesterol movement within 

cells and the process involved in the maintenance of a steady state of cholesterol, 

respectively. These two terms collectively underscore the regulatory balance of 

cholesterol. Physiologically, cholesterol plays a critical role in maintaining the 

optimal level of energetic metabolism (Czuba et al., 2017). Considering that the CBF 

is deemed as closely coupled with glucose and oxygen metabolism (Hoge et al., 1999; 

Paulson et al., 2010; Vaishnavi et al., 2010b), and has been used as a surrogate of 

energetic metabolism (Liang et al., 2013), the observed relationship of CBF networks 

with cholesterol-related processes in this study may reflect a potential collaboration 

between cholesterol regulation and CBF distribution in supporting brain energy 

demands. In addition to the cholesterol-related processes, the PLS1+ genes were also 

enriched in several endothelial cell-related processes (e.g., positive regulation of 

endothelial cells apoptotic process and regulation of endothelial cells differentiation), 

which mirrored the finding of a significant correlation between nodal degrees and 

mean gene expressions of genes enriched in endothelial cells. For endothelial cells, 

several studies have reported its role in CBF regulation, including vascular tone 

regulation, inflammatory response, thrombosis, adhesion, and vascular permeability 

(Ashby and Mack, 2021; Cohen, 1995; Godo and Shimokawa, 2017). Hence, this 

finding suggests that the CBF networks may capture the affiliation between 

endothelial cells and the CBF circulation. Taken together, our findings provide new 
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insights into understanding the neurobiological substrates of CBF networks by linking 

the macroscopic topology of the CBF networks with various microscopic biological 

processes. 

 

Cognitive and behavioral relevance of CBF networks 

In this study, we demonstrated the cognitive and behavioral relevance of CBF 

networks using a multivariate mapping method. Numerous studies have pointed out 

that the cognition results from the functional interactions of distributed brain systems 

operating in large-scale networks (Bressler and Menon, 2010). Noticing the non-

random modular organization exhibited in the CBF networks, it is interesting in the 

future to characterize the modular architecture of CBF networks in detail, and further 

investigate the roles of interactions between and within these modules on human 

cognition. Such study can significantly advance our understanding on how CBF 

networks support cognition. Specifically, the cognitive functions largely contributing 

to the mapping between CBF networks and cognitive and behavioral data included 

executive function, working memory, and language processing. This finding is aligned 

with a cohort study that higher regional CBF levels are associated with better 

performance in attention, executive function, and memory (Leeuwis et al., 2018), 

suggesting that cognitive performance is not only linked to regional CBF levels but 

also to topological organization of the CBF networks. Altogether, our findings provide 

a network-based perspective on how CBF modulates cognitive processes, and bring a 

new insight into the neural mechanisms underlying cognition. 
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Limitations and future directions 

Several limitations existed in the current study. First, there were inherent issues 

associated with ASL imaging technology, e.g., the inevitably intravascular artifacts. 

Although inflow saturation was implemented to suppress the intravascular signal 

results from the inflow of blood during post-labeling delay, we could not fully exclude 

the influence of this issue on the CBF networks. Further technical progress is needed 

to resolve these issues for constructing more reliable CBF networks. Second, the 

biological meaning of CBF networks was examined by associating the networks with 

publicly available datasets. This may result in an underestimation of the genetic and 

chemoarchitectonic correlates of CBF networks. Therefore, further work is required 

by collecting the related data from the same cohort of participants to validate our 

results. Finally, CBF alterations have been found in several neuropsychiatric disorders 

(Falcon et al., 2024; R. Li et al., 2021; Percie Du Sert et al., 2023), an interesting topic 

in the future is to investigate whether CBF networks are also disrupted in these 

disorders. 
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Figure legends 

Figure 1. Topological organization of the CBF networks. a) Group-level mean CBF 

similarity matrix. b) The CBF networks showed small-world organization, high 

parallel efficiency, and modularity. c) The degree distribution of the CBF networks 

was best fitted by the exponentially truncated power law model. d) A total of 20 

regions were identified as hubs in the CBF networks. CBF, cerebral blood flow; JSDs, 

Jensen-Shannon divergence-based similarity; Nor Cp, normalized clustering 

coefficient; Nor Lp, normalized shortest path length; Nor Eloc, normalized local 

efficiency; Nor Eglob, normalized global efficiency; Nor Q, normalized modularity; 

LH, left hemisphere; RH, right hemisphere; FrOper, frontal operculum; Ins, insula; 

PFCl, lateral prefrontal cortex; pCunPCC, precuneus posterior cingulate cortex; 

Temp, temporal. 

 

Figure 2. The test-retest reliability and between-subject consistency of the CBF 

networks. The CBF networks exhibited low-to-fair test-retest reliabilities and high 

between-subject consistencies for both nodal degree (a and c) and interregional CBF 

similarity (b and d). TRT, test-retest; CBF, cerebral blood flow; ICC, intraclass 

correlation coefficient. 

 

Figure 3. The difference between high- and low-order subnetworks in interregional 

CBF similarity. Significantly higher interregional CBF similarity was found within 

high- than low-order subnetworks. CBF, cerebral blood flow. 
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Figure 4. Factors affecting the CBF networks. a) Interregional CBF similarities 

exhibited a significantly negative correlation the anatomical distances between 

regions. b) Nodal degrees of the CBF networks showed a significantly negative 

correlation with regional sizes. c) Nodal degrees of the CBF networks showed a 

significantly positive correlation with regional CBF levels. CBF, cerebral blood flow. 

 

Figure 5. Chemoarchitectonic correlates of the CBF networks. Nodal degrees of the 

CBF networks showed a significantly positive correlation with regional intensities of 

DAT (a) and a significantly negative correlation with regional intensities of mGluR5 

(b). 

 

Figure 6. Genetic correlates of the CBF networks. a) Nodal degrees of the CBF 

networks showed a significantly positive correlation with the PLS1 scores derived 

from transcriptional activity of 15,633 genes. b) A total of 427 and 383 genes were 

identified to show positive and negative contribution to the PLS1 scores, respectively. 

c) Nodal degrees of the CBF networks showed a significantly positive correlation 

with the mean transcriptional activity of genes enriched in the endothelial cell. PLS, 

partial least-squares; FDR, false discovery rate. 

 

Figure 7. Cognitive relevance of the CBF networks. a) Nodal degrees of the CBF 

networks showed a significantly positive correlation with the PLS1 scores derived 
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from 123 activation maps. b) A total of 24 and 28 cognitive processes were identified 

to show positive and negative contribution to the PLS1 scores, respectively. PLS, 

partial least-squares. 
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